Unlocking the OLED display markets

March 2018

OLED technology reaches the volume market and is one of the fastest growing segments in the technology sector

Displays everywhere

Novel form factors

- Ubiquity of information, IoT and smart home drive number of OLED displays and display size
- Significant improvement of OLED display production cost needed to reach tipping points for additional markets
- New applications and functionalities enabled by flexibility and transparency of OLED displays
- Enhanced display lifetime, energy efficiency and color brightness needed to satisfy application needs

Next step in OLED display technology needed to address future's cost/ performance needs

Schematic of today's VTE technology

- Evaporation of material from heated crucible (source)
- Spreading of material into all directions
- Larger distance between source and substrate

Challenges of today's VTE technology

Limitations in display performance improvement

- Challenges in mixing materials
- High effort for controlling material flow
- Mainly simple OLED stacks

Limitations in substrate scaling

- High effort to produce desired uniformity
- Increasing complexity with substrate scaling

High production cost

- Lower efficiency in usage of expensive organic materials (up to several hundred USD per gram)
- Downtime from frequent cleaning

Key modules are IP protected

OVPD technology value proposition: Enabler of improved OLED display performance

VTE technology

- Separate deposition chamber needed for each material
- Mixing of materials limited

- Multiple materials can be mixed and well controlled in deposition system
- Improved display properties possible, e.g., better
 - Display lifetime
 - Color and brightness

OVPD technology opens the way to OLED display performance improvements

Substrate

OVPD technology value proposition: Scalability to larger substrate sizes while maintaining process performance

VTE technology

- Uniformity for large substrates require increasing distance (d) from source to substrate
- Complexity of system increases with scale-up

OVPD technology

- APEVA's sources can be scaled up to provide throughput needed for larger substrates
- Scaling in size with limited effort while maintaining uniformity across larger substrates

OVPD can be scaled to larger substrates while today's VTE faces challenges

1 Gen 6H approx. 1,5 x 0,9 m ; Gen 6 approx. 1,5 x 1,8m ; Source: APEVA

Rival alternative production technology OLED printing has several disadvantages compared to APEVA's OVPD technology

	Pattern pixel bank Drop placement by inkjet 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Highest resolution Patterning with mask technology possible Resolution driven applications, e.g., mobile	 Limited resolution Larger Displays eg TV, Outside panels → Lower resolution applications
Existing materials in powder form from VTE can be used w/o changes	New materials in liquid form
Small footprint for reactor No dedicated drying	 Larger area in factory needed for drying equipment
OVPD and OLED Inkjet printing segments of the O	
	Patterning with mask technology possible Resolution driven applications, e.g., mobile Existing materials in powder form from VTE can be used w/o changes Small footprint for reactor No dedicated drying <i>OVPD and OLED Inkjet printing</i>

Source: APEVA; Printing process courtesy of Kateeva

1. Enabler of improved OLED display performance

- ✓ Deposition of multiple materials in a single process chamber
- ✓ Precise flow rate control and high process stability
- ✓ Supporting display lifetime improvement

2. Scalability to larger substrate sizes

✓ Deposition uniformity is maintained upon scaling up substrates

✓ Higher material flow rates needed for large substrates possible

3. Significant Total Cost of Ownership (TCO) reduction in deposition of organic stack

✓ Reduced variable cost due to high efficiency in usage of expensive OLED materials

✓ Smaller production footprint possible

4. Compatibility to existing OLED materials and suppliers

 \checkmark Usage of existing organic materials that are in mass production today

Image Credits

Slide 1

Cover Pic: https://www.behance.net/steeldrake

Slide 3 (clockwise)

- Pic 1: Visual Invention (<u>http://bit.ly/2FIrE2a</u>)
- Pic 2: Daimler AG (http://bit.ly/2HMNxu3)
- Pic 3: www.flatpanelshd.com (http://bit.ly/2FOWUwo)
- Pic 4: VeneStudio (<u>http://bit.ly/2HKrjso</u>)
- Pic 5: SAIC (<u>http://bit.ly/2IwWWqx</u>)
- Pic 6: Pocketnow (http://bit.ly/2GImjFz)
- Pic 7: Virginia Polytechnic Institute and State University (http://bit.ly/2FTc5AP)
- Pic 8: IKEA (<u>http://bit.ly/2GITngv</u>)